
ISA Aging:
A x86 case study

WIVOSCA 2013

1

Bruno Lopes, Rafael Auler, Rodolfo Azevedo, Edson Borin
University of Campinas, Brasil

Institute of Computing
{blopes,rauler,rodolfo,edson}@ic.unicamp.br

LSC
COMPUTER

SYSTEMS

LABORATORY

Introduction

• Despite large amount of available main
memory

• Code compression importance is still
high

• Instruction cache misses impact
performance

• IA-32 CISC (x86) used to be compact

2

Introduction

• CISC IA-32 code compaction does not scale
with the addition of new features

• Addition of new instructions: instruction length
harms code compaction

• Mode exchange (e.g. IA-32e and ARM/Thumb2):
increases the hardware complexity

3

ISA Evolution

Introduction

• Study the IA-32 evolution over time

• Opcode usage and deprecation

• Raise discussion about opcode utilization
and backward compatibility

4

Historical Analysis

• Intel 8086 family, variable-length format

• Operation code: opcode + other bits to
uniquely identify an instruction

5

The x86 instruction set

• 16-bit 8086 (1978): ~400 instructions

• Haswell (2013): ~1300 instructions

• Multimedia instructions has the complexity
and size of an entire new ISA

6

The x86 instruction set

7

The x86 instruction set

400# 500# 600# 700# 800# 900# 1000# 1100# 1200# 1300#

2013#,#Haswell#(AVX2+FMA3)#

2011#,#Core#i7#Sandy#Bridge#(AVX)#

2008#,#Core#i7#Nehalem#(SSE4.2)#

2007#,#Core#Penryn#(SSE4.1)#

2006#,#Core#(SSSE3)#

2004#,#PenKum#4#PrescoN#(SSE3)#

2001#,#PenKum#4#(SSE2)#

1999#,#PenKum#III#(SSE)#

1996#,#PenKum#II#(MMX)#

1995#,#PenKum#Pro#

1993#,#PenKum#

1989#,#80486#

1987#,#80387#

1985#,#80386#

1982#,#80286#

1982#,#80186#

1980#,#8087#

1978#,#8086#

Intel&x86&ISA&Growth&(197852013)&

Accumulated#instrucKon#count#

8

The x86 instruction set

400# 500# 600# 700# 800# 900# 1000# 1100# 1200# 1300#

2013#,#Haswell#(AVX2+FMA3)#

2011#,#Core#i7#Sandy#Bridge#(AVX)#

2008#,#Core#i7#Nehalem#(SSE4.2)#

2007#,#Core#Penryn#(SSE4.1)#

2006#,#Core#(SSSE3)#

2004#,#PenKum#4#PrescoN#(SSE3)#

2001#,#PenKum#4#(SSE2)#

1999#,#PenKum#III#(SSE)#

1996#,#PenKum#II#(MMX)#

1995#,#PenKum#Pro#

1993#,#PenKum#

1989#,#80486#

1987#,#80387#

1985#,#80386#

1982#,#80286#

1982#,#80186#

1980#,#8087#

1978#,#8086#

Intel&x86&ISA&Growth&(197852013)&

Accumulated#instrucKon#count#

• Avoids backward compatibility
breakage, with new operation codes to
hold new functionality

• More bytes per instruction: average number
of operation code bytes changed from 2.7
to 4 bytes

9

The x86 instruction set

10

The x86 instruction set

Average instruction operation code
size for each x86 feature

Methodology

• Selected 32-bit x86 software environment for
each selected year: Home and office SW to
improve coverage

• Static frequencies of x86 instructions of different
types and their evolution in time both in
Windows and Linux desktops

11

• Static analysis uses a crawler, analyzing entire
virtual machines disks for executable files.

• Found x86 instructions are catalogued using
disassemblers libraries:

• Agner’s object file converter

• Bochs disassembler library

12

Methodology

Analyzed SW

13

Software systems analyzed, each
with its own virtual machine

Unused Instructions

14

• 505 unused operation codes in all disks (30% of
all 32-bit operation codes)

Number of unused operation codes by size.
There were no unused 1 and 2 bytes operation codes

Used Instructions

15

Dead Instructions

16

Last time a specific amount of
operation codes were last seen

Dead Instructions

17

22 operation codes were
last seen in Linux by 1996

Last time a specific amount of
operation codes were last seen

18

Additional 8 operand codes
disappeared by Ubuntu 8

Dead Instructions

Last time a specific amount of
operation codes were last seen

19

6 operation codes were
last seen in Win95

Dead Instructions

Last time a specific amount of
operation codes were last seen

20

Additional 4 operand codes
disappeared by WinXP

Dead Instructions

Last time a specific amount of
operation codes were last seen

Dead Instructions

21

Last time a specific amount of
operation codes were last seen

(per operand code size)

Dead Instructions

22

last time LES instruction
(load far pointer using ES)

is seen

Last time a specific amount of
operation codes were last seen

(per operand code size)

Free operation
codes

23

• In a scenario where the operation code space
could be reused, it is specially important to pick a
1-byte instruction

• Escape code to encode 256 new 2-byte
instructions.

Vector Extensions

• First extensions to address floating-point
calculations were 8087 and 80387

• Stack based, old and inconvenient method
for modern compilers

• Now Superseded by MMX, SSE, AVX, ...

• Multiple fp calculations on the same cycle

• Regular register operands (easier to the
compiler to handle)

24

Vector Extensions

• Older IA-x87 floating-point extensions are still
widely present in modern software

• Default floating point option for several
production compilers such as GCC

25

Vector Extensions

• ISA is forced to be redundant

• E.g. It is possible to add two floating point data
using either IA-x87 or vector extensions, a
suboptimal operation code organization

• Larger binaries using multimedia extensions
than using IA-x87

26

Vector Extensions

27

SPEC2006FP Code Size: SSE, AVX and IA-x87

ISA Aging

• Compilers may explore old encodings because
they have better compaction rates

• Many other operation codes are being deprecated,
leaving, in terms of compaction rate, valuable
encodings unused

• Removing unused instructions reduces hardware
complexity

28

Summary

Conclusion

• Would backward compatibility disruption
in favor of ISA evolution negatively impact
systems?

• In practice, our Windows and Linux-based
benchmarks show that many instructions were
definitely retired by the software industry

29

Questions?

30

