ISA Aging: A x86 case study

WIVOSCA 2013

Bruno Lopes, Rafael Auler, Rodolfo Azevedo, Edson Borin

University of Campinas, Brasil Institute of Computing {blopes,rauler,rodolfo,edson}@ic.unicamp.br

Introduction

- Despite large amount of available main memory
- Code compression importance is still high
- Instruction cache misses impact performance
- IA-32 CISC (x86) used to be compact

ISA Evolution

- CISC IA-32 code compaction does **not scale** with the addition of new features
- Addition of new instructions: instruction length harms code compaction
- Mode exchange (e.g. IA-32e and ARM/Thumb2): increases the hardware complexity

Historical Analysis

- Study the IA-32 evolution over time
 - Opcode usage and deprecation
- Raise discussion about opcode utilization and **backward compatibility**

- Intel 8086 family, **variable-length** format
- **Operation code**: opcode + other bits to uniquely identify an instruction

1–4 Bytes	1–3 Bytes	1 Byte	1 Byte	
Instruction Prefixes (Optional)	Opcode	ModR/M (Optional)	SIB (Optional)	Operands (Optional)

Total size cannot exceed 15 bytes

- 16-bit 8086 (1978): ~400 instructions
- Haswell (2013): ~1300 instructions
- Multimedia instructions has the complexity and size of an entire new ISA

Intel x86 ISA Growth (1978-2013)

Accumulated instruction count

Intel x86 ISA Growth (1978-2013)

Accumulated instruction count

- Avoids backward compatibility
 breakage, with new operation codes to hold new functionality
- More bytes per instruction: average number of operation code bytes changed from 2.7 to 4 bytes

Average instruction operation code size for each x86 feature

Methodology

- Selected 32-bit x86 software environment for each selected year: Home and office SW to improve coverage
- Static frequencies of x86 instructions of different types and their evolution in time both in Windows and Linux desktops

Methodology

- Static analysis uses a crawler, analyzing entire virtual machines disks for executable files.
- Found x86 instructions are catalogued using disassemblers libraries:
 - Agner's **object file converter**
 - **Bochs** disassembler library

Analyzed SW

Software systems analyzed, each with its own virtual machine

Release	Operating System	Additional Software
1996-1997	Slackware Linux 3	Netscape 4.0.1, StarOffice 3.1
2007-2008	Ubuntu 8.10	Firefox 3.0.3, OpenOffice 2.4
2011-2012	Ubuntu 12.04	Firefox 11, LibreOffice 3.5
1995-1996	Windows 95	I.E. 3, Office 95
2001-2004	Windows XP SP2	I.E. 6, Office 2003
2010-2012	Windows 7 SP1	I.E. 8, Office 2010

Unused Instructions

• 505 unused operation codes in all disks (30% of all 32-bit operation codes)

Туре	Number of unused operation codes				
	3 Bytes	4 Bytes	5 Bytes	6 Bytes	
AVX	3	61	5	0	
SSE	74	238	7	1	
Other	40	76	0	0	
Total	117	375	12	1	

Number of unused operation codes by size. There were no unused 1 and 2 bytes operation codes

Used Instructions

OS Releases

Number of Dead Operation Codes

16

Number of Dead Operation Codes

Number of Dead Operation Codes

Free operation codes

- In a scenario where the operation code space could be reused, it is specially important to pick a I-byte instruction
 - Escape code to encode **256 new 2-byte** instructions.

Vector Extensions

- First extensions to address floating-point calculations were 8087 and 80387
 - Stack based, old and **inconvenient** method for modern compilers
- Now **Superseded** by MMX, SSE, AVX, ...
 - Multiple fp calculations on the same cycle
 - Regular register operands (easier to the compiler to handle)

Vector Extensions

- Older IA-x87 floating-point extensions are still widely present in modern software
 - Default floating point option for several production compilers such as **GCC**

Vector Extensions

- ISA is forced to be redundant
 - E.g. It is possible to add two floating point data using either IA-x87 or vector extensions, a suboptimal operation code organization
 - Larger binaries using multimedia extensions than using IA-x87

SPEC2006FP Code Size: SSE, AVX and IA-x87

Summary

- Compilers may explore old encodings because they have **better compaction rates**
- Many other operation codes are being deprecated, leaving, in terms of compaction rate, valuable encodings unused
- Removing unused instructions reduces hardware complexity

- Would backward compatibility disruption in favor of ISA evolution negatively impact systems?
- In practice, our Windows and Linux-based benchmarks show that many instructions were definitely retired by the software industry

Questions?